7 research outputs found

    cISP: A Speed-of-Light Internet Service Provider

    Full text link
    Low latency is a requirement for a variety of interactive network applications. The Internet, however, is not optimized for latency. We thus explore the design of cost-effective wide-area networks that move data over paths very close to great-circle paths, at speeds very close to the speed of light in vacuum. Our cISP design augments the Internet's fiber with free-space wireless connectivity. cISP addresses the fundamental challenge of simultaneously providing low latency and scalable bandwidth, while accounting for numerous practical factors ranging from transmission tower availability to packet queuing. We show that instantiations of cISP across the contiguous United States and Europe would achieve mean latencies within 5% of that achievable using great-circle paths at the speed of light, over medium and long distances. Further, we estimate that the economic value from such networks would substantially exceed their expense

    Borg : the next generation

    Get PDF
    This paper analyzes a newly-published trace that covers 8 different Borg [35] clusters for the month of May 2019. The trace enables researchers to explore how scheduling works in large-scale production compute clusters. We highlight how Borg has evolved and perform a longitudinal comparison of the newly-published 2019 trace against the 2011 trace, which has been highly cited within the research community. Our findings show that Borg features such as alloc sets are used for resource-heavy workloads; automatic vertical scaling is effective; job-dependencies account for much of the high failure rates reported by prior studies; the workload arrival rate has increased, as has the use of resource over-commitment; the workload mix has changed, jobs have migrated from the free tier into the best-effort batch tier; the workload exhibits an extremely heavy-tailed distribution where the top 1% of jobs consume over 99% of resources; and there is a great deal of variation between different clusters.Publisher PD

    In Silico and In Vivo Evaluation of Synthesized SCP-2 Inhibiting Compounds on Life Table Parameters of Helicoverpa armigera (Hübner)

    No full text
    For environment-friendly, safe and nonpersistent chemical control of a significant polyphagous insect pest, Helicoverpa armigera, discovery of growth-regulating xenobiotics can offer a sustainable alternative to conventional insecticides. For this purpose, chemically synthesized compounds to inhibit sterol carrier protein (SCP-2) function using in silico and in vivo assays were evaluated to estimate their impact on the survivals and lifetable indices of H. armigera. From nine chemically synthesized compounds, OA-02, OA-06 and OA-09 were selected for this study based on binding poses mimicking cholesterol, a natural substrate of sterol carrier protein and molecular dynamics simulations. In vivo bioassays revealed that all compounds significantly reduced the larval and pupal weight accumulations and stadia lengths. Subsequently, the pupal periods were prolonged upon treatment with higher doses of the selected compounds. Moreover, OA-09 significantly reduced pupation and adult emergence rates as well as the fertility of female moths; however, fecundity remained unaffected, in general. The life table parameters of H. armigera were significantly reduced when treated with OA-09 at higher doses. The population treated with 450 μM of OA-09 had the least net reproductive rates (Ro) and gross reproductive rate (GRR) compared to the control population. The same compound resulted in a declining survival during the early stages of development coupled with reduced larval and pupal durations, and fertility. These results have a significant implication for developing an effective and sustainable chemical treatment against H. armigera infestation

    cISP: A Speed-of-Light Internet Service Provider

    No full text
    Low latency is a requirement for a variety of interactive network applications. The Internet, however, is not optimized for latency. We thus explore the design of wide-area networks that move data at nearly the speed of light in vacuum. Our cISP design augments the Internet's fiber with free-space microwave wireless connectivity over paths very close to great-circle paths. cISP addresses the fundamental challenge of simultaneously providing ultra-low latency while accounting for numerous practical factors ranging from transmission tower availability to packet queuing. We show that instantiations of cISP across the United States and Europe would achieve mean latencies within 5% of that achievable using great-circle paths at the speed of light, over medium and long distances. Further, using experiments conducted on a nearly-speed-of-light algorithmic trading network, together with an analysis of trading data at its end points, we show that microwave networks are reliably faster than fiber networks even in inclement weather. Finally, we estimate that the economic value of such networks would substantially exceed their expense
    corecore